Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
Q DP problem:
The TRS P consists of the following rules:
EVEN1(s1(s1(x))) -> EVEN1(x)
TIMES2(s1(x), y) -> IF_TIMES3(even1(s1(x)), s1(x), y)
PLUS2(s1(x), y) -> PLUS2(x, y)
IF_TIMES3(true, s1(x), y) -> TIMES2(half1(s1(x)), y)
IF_TIMES3(true, s1(x), y) -> HALF1(s1(x))
IF_TIMES3(true, s1(x), y) -> PLUS2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
IF_TIMES3(false, s1(x), y) -> PLUS2(y, times2(x, y))
TIMES2(s1(x), y) -> EVEN1(s1(x))
IF_TIMES3(false, s1(x), y) -> TIMES2(x, y)
HALF1(s1(s1(x))) -> HALF1(x)
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
EVEN1(s1(s1(x))) -> EVEN1(x)
TIMES2(s1(x), y) -> IF_TIMES3(even1(s1(x)), s1(x), y)
PLUS2(s1(x), y) -> PLUS2(x, y)
IF_TIMES3(true, s1(x), y) -> TIMES2(half1(s1(x)), y)
IF_TIMES3(true, s1(x), y) -> HALF1(s1(x))
IF_TIMES3(true, s1(x), y) -> PLUS2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
IF_TIMES3(false, s1(x), y) -> PLUS2(y, times2(x, y))
TIMES2(s1(x), y) -> EVEN1(s1(x))
IF_TIMES3(false, s1(x), y) -> TIMES2(x, y)
HALF1(s1(s1(x))) -> HALF1(x)
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 4 SCCs with 4 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PLUS2(s1(x), y) -> PLUS2(x, y)
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PLUS2(s1(x), y) -> PLUS2(x, y)
Used argument filtering: PLUS2(x1, x2) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
HALF1(s1(s1(x))) -> HALF1(x)
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
HALF1(s1(s1(x))) -> HALF1(x)
Used argument filtering: HALF1(x1) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
EVEN1(s1(s1(x))) -> EVEN1(x)
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
EVEN1(s1(s1(x))) -> EVEN1(x)
Used argument filtering: EVEN1(x1) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
TIMES2(s1(x), y) -> IF_TIMES3(even1(s1(x)), s1(x), y)
IF_TIMES3(true, s1(x), y) -> TIMES2(half1(s1(x)), y)
IF_TIMES3(false, s1(x), y) -> TIMES2(x, y)
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
IF_TIMES3(false, s1(x), y) -> TIMES2(x, y)
Used argument filtering: TIMES2(x1, x2) = x1
s1(x1) = s1(x1)
IF_TIMES3(x1, x2, x3) = x2
half1(x1) = x1
even1(x1) = even
0 = 0
false = false
true = true
Used ordering: Quasi Precedence:
[even, false, true]
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TIMES2(s1(x), y) -> IF_TIMES3(even1(s1(x)), s1(x), y)
IF_TIMES3(true, s1(x), y) -> TIMES2(half1(s1(x)), y)
The TRS R consists of the following rules:
even1(0) -> true
even1(s1(0)) -> false
even1(s1(s1(x))) -> even1(x)
half1(0) -> 0
half1(s1(s1(x))) -> s1(half1(x))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
times2(0, y) -> 0
times2(s1(x), y) -> if_times3(even1(s1(x)), s1(x), y)
if_times3(true, s1(x), y) -> plus2(times2(half1(s1(x)), y), times2(half1(s1(x)), y))
if_times3(false, s1(x), y) -> plus2(y, times2(x, y))
The set Q consists of the following terms:
even1(0)
even1(s1(0))
even1(s1(s1(x0)))
half1(0)
half1(s1(s1(x0)))
plus2(0, x0)
plus2(s1(x0), x1)
times2(0, x0)
times2(s1(x0), x1)
if_times3(true, s1(x0), x1)
if_times3(false, s1(x0), x1)
We have to consider all minimal (P,Q,R)-chains.